بدست آوردن دیتاهای ژئوتکنیکی لازم جهت طراحی کی وال، احیای اراضی و بهبود زمین در بخشی از بندر شهید رجائی93- قسمت 30

بدست آوردن دیتاهای ژئوتکنیکی لازم جهت طراحی کی وال، احیای اراضی و بهبود زمین در بخشی از بندر شهید رجائی93- قسمت 30

شکل4- 4-منحنی به دست آوردن ضریب مقاومت روانگرائی
اگر کمتر از 50 باشد از رابطه 4-18 به دست می آید.
4-18
اگر مابین 50 و 160 باشد از رابطه 4-19 به دست می آید.
4-19
روند کلی عامل تعیین نسبت عامل مقاومت براساس داده های CPTو مطابق با پیشنهاد به طور خلاصه و گام به گام در شکل 4-5 آمده است.
توان تنش در حالتهای مختلف ) 1و 5/0و 7/0 (برای Q بستگی به نوع خاک دارد. بنابراین یک فرایند با روند تکراری مورد نیاز است، جهت محاسبه Ic و توان متناسب یا نوع خاک می توان با بهره گرفتن از چاه گمانه نزدیک به چاله های CPT حدس زده شود. مقدار توان Q از 5/0 برای خاک های دانه ای و 1 برای خاکهای رسی متغیر است. این محاسبات بیشتر توسط برنامه های کامپیوتری با یک روند تکراری صورت می گیرد، در این محاسبات با فرض اینکه خاک رس است محاسبات شروع می شود.(توان تنش یک در نظر گرفته شده است).

CPT
شاخص خاک در این محدوده بیانگر رس است
شکل4- 5- روندنمای تعیین نسبت مقاومت تناوبی براساسCPT با پیشنهاد().
4-4- تصحیح مربوط به تنش سربار برای به دست آمده بر مبنای تستهای نفوذ استاندارد و نفوذ مخروط
تصحیح شده برای تنش سربار قائم از دو روش تست استاندارد و تست نفوذ مخروط بر طبق روش زیر به دست می آید.
4-20
: فاکتور تصحیح برای تنش برشی اولیه که برابر با 1 است. در سال 1997 مرکز ملی تحقیقات مهندسی زلزله، گروهی که در همین زمینه تحقیق می کردند، نتیجه گرفتند که استفاده از در عملیات مهندسی زمین لرزه های ژئوتکنیکی توصیه نمی شود.
: فاکتور تصحیح برای تنش سربار که در شکل 4-6 داده شده است.
 جهت دانلود متن کامل پایان نامه به سایت azarim.ir مراجعه نمایید.

/GgD02ioILqC4gWeGZJYnGVdGBB+hqUOpGQQfWgDmPiT/wAk38Qf9eT1c8F/8iPoX/XhD/6AKpfEg5+G/iH/AK8n/lV7wX/yI+hf9eEP/oAoA3KKKKAMPxn/AMiRrv8A14Tf+gGqHwz/AOSa+Hv+vGP+VX/Gf/Ika7/14Tf+gGqHwz/5Jp4d/wCvGP8AlQB1dFFFADHGa86+GAca141LkknVup/3a9GYkdATXA/DsBfEPjaMfw6t/NBQB6AOlFFFAB2rhPC7K/xO8ZEp86fZlDe3l5ru64Dwz8nxX8YLn76Wzf8AjmKAO/ooooAK4PWcL8Y/DxP8enzr/M13lec68sn/AAvLw0y7tv8AZ0wOBnH3qAPRR0paavIzjrTqACuD8YkDx74ITp/pczf+Q67yuD8Zj/ivvA7el3MP/IdAHeUUUUAFcJ8Wv+RRtv8AsJ2n/o1a7uuE+LX/ACKNt/2E7T/0aKAO6H3RS0g6CloAKxfFqb/CWrKOptJP5GtqsnxKyp4a1RnPyi1k/wDQTQBhfC0EfDjRMkH9yf8A0I12w6VxfwwYH4daIRnBgx09zXaDpQAUUUUAHamUsjbI2YKW2gnA6muN0H4h2Wv6ne6fb2N3HPZhvPEi42Edjx1oA7Giua8OeNLLxPLMNPt7kxREq0zRlULDGVBI6jNdKORmgAqhrl+dL0DUdQVd5tbaSYL67VJx+lX6iuraK8tJrWdA8MyGN1PQqRgigDzDwpq+rWviLS7XUNRkvY9a043zbyMRSZzhfRcdqztY8Ra7D8TDp0Oo+QRcxJBEzqLdoCMtv/6aZ6A812Nl8O4LN9/9r37SRWxtLSRWVXt4s5wDjk57ntUVz8MdOubuWWa/vHhmnjup42KkySxjAbO3IyOoFAGbYeJtG8N+PvFEerX8ds1w0Eke/wDjATBNbjfE/wAJKeNU3/7kbN/IVm+G7KC++IPjA3dvFOIpYVjMiBto2dBmu1XS7JGBS1hXAxxGBQBzsPxO8HzddZhiPPyygoePY1ZX4g+EmUN/b1kAR/FJitV9D0uWQvJp9qznqzQqT/KnHRtNZNjWFqVPYwrj+VAHmx8Z+HE+Lz6j/a9q1n/Y4i81Xyu/zc4+uK6xPiV4Rdwv9swqD/EwIX86xI9J09fjPJbrZQCL+xA2wRjGfN649a7htH054zGbG22nqPKXH8qAMdfiH4Rd9q6/ZfXzOKc3j/wlj/kYdPz6eeK0xoOlL93TrVfpCv8AhSHQNIPJ0uzJ9TAvP6UAeefEXxv4cutIsI7PWLWd1v4pD5T7sKCcmtPWdV+HPia28rU9Q0edGHBdwHX8eoqh8V9LsbXw7Yta2VvHIdRgGEiUZBPTpXfLoGkA/wDILsx/2wX/AAoA8MvdOh8N3n2rwL4/sooD1srm6yv68H8RWv4e+OcNvcfYfFFvsmThry0YSRn8F/pmvXToGkMcnTLM/WBf8Kb/AMI5o+Mf2ZZ/9+F/woA4Xxp498K6t8OtYhstctJJrizcRwmQCQkjptPOa0vCfjjwva+D9Gt59esI5orKFHRpgCpCDINc38SvhV4XTw1qut2to1nd20DTAW7bUYj1Xn9K57S/C3jjRfDun6ho6adrltcwRyC2urdS8YZAepxwOnBoA9e/4T/wj/0MWnf9/wAUn/CwPCP/AEMWnf8Af8V5lY/EjT9OvVsfGHguPS5OA0y2wKL7kYJ/Ku90fWPAev4GlnSZ3K52eWqsPwYA0AQeK/HHha68Iazbwa/YSTS2UqIizAliUOAKpfD/AMaeGbD4f6FaXeuWMM8VmiyRvMAVOOhFbHi3R9KTwdrUkWmWastjMQywrkHYeQQKqfDrRtLuPh74fkm021kkeyQs7QqSTjqTigDX/wCFgeEf+hi07/v+KP8AhYHhH/oYtO/7/itL/hHtG/6Bdl/34X/Cj/hHtG/6Bdl/34X/AAoAy28feEiRjxFp3/f8Vwnw88V+H9N1fxc93rNnGtxqfmQs8oHmLt6j2r01vD+j9tKsvf8AcL/hXD+CNH06fxF4yhlsbZlh1QLGGiB2jYDgelAHUDx/4Rx/yMWnf9/xR/wn/hH/AKGLTv8Av+K0B4d0ZlGdKsun/PBf8KUeHdFHTSrL/vwv+FAGcfH/AIRwf+Ki07/v+K4fw94r0CH4n+KNRm1qxjs5UgSJ2lAEmFGceuK9K/4R7Rv+gXZf9+F/wrifDmiaa3xJ8VRvYWxiVbcpG0SkLlOcDHFAHSf8J/4R/wChi07/AL/ij/hP/CP/AEMWnf8Af8Vpf8I9o3/QKsv+/C/4Uf8ACPaN/wBAqy/78L/hQBm/8LA8I/8AQxad/wB/xXG6v4v8OyfFHQr+LWrJrWOzmjklEo2qeoBr0Q+HtGPXSrL/AL8L/hXC67pmlR/FvwvZJp9sqPa3DuohXa3HGRj2oA6dPH/hLbz4i04f9thS/wDCwPCP/Qxad/3/ABWivh7R8f8AILsjn/pgv+FL/wAI/o3/AEC7L/vwv+FAGb/wsDwj/wBDFp3/AH/Fcb4q8YeHbrxl4QuINaspILa6laZ1lBCAx4BPpzXon/CPaN/0CrL/AL8L/hXDeLdI0yPxv4MhjsLZUku5hIoiUBx5fcYoA6f/AIT/AMI/9DFp3/f8Uo8f+Ej/AMzFp3H/AE3FaH/CO6KBxpNiP+2C/wCFIfDeiNjOk2Rx/wBMF/woAoL4+8JMwVfEOnEnp+/Fcf8AE/xX4fv/AAxbwWusWc0q6jbOVSUE7RICT+Arv38NaG67W0iyK+nkL/hXDfE7QNJsPCtvJa6dawsdRtVLJEoODKuRQB1I8f8AhHHPiLTh/wBtxR/wsDwj/wBDFp3/AH/FaK+HtG2j/iV2X/fhf8KP+Ed0U9dJsj/2wX/CgDO/4T/wj/0MWnf9/wAVl+IvG3ha78N6lbw6/p7yyW7qiicZJx0rpf8AhHdF/wCgVZf9+F/wrD8X6FpcHhLV5YdNtElW0kKusKgqcduKAD4ZRrF8O9EVOhtwx/E5rsh0rjfhg2/4caIfS3x+tdkOlABRRRQAh6Gvl27uPEVt4n8ZzaZFLJpceok6kIG2yNFluM9QuM5x7V9RMCUYAkEjqO1cVovgW30DU9Tv4dRu5pdUZmuUlCFGc55xt7ZPFAGl4VutHvPDlnPoixpp5jzGi8bfUH3qhrHxI8OaFcva3d4xki4kMcZdVP8AdJHG4+lYlp4IufBeg6pNoWpXk08kMsn2WTaY2kIOCoA+X8PSuMOzX/htpvhTQo5LrWLmVZtQcoVMTZO5pGYdcn1zxQB7bpGsQa3pkGoWqSpDMNyiZNjj6g9K0arWNoLSwtrYu0hhiWPex5bAAyfyqzQAUh6UZB6GmPIF6n6c0Acb4TdW8e+MgvaaDP12V21cN4OCjx542weTdQE/Xy67mgAooooA4ZR/xe6Q/wDUDH/o2u5rhV/5LfJ/2Ax/6NruqACkPSlooA84+LZ8uw0OU8qupJn8a9FXPf1rgPixAtxoelxs+1jqUOPU81365z1oAdRRRQBy3xJ/5Jv4h/68nq34MUHwRoWef9Ah4/4AKp/En/km/iD/AK8nq94L/wCRH0L/AK8If/QBQBp3en2l/D5V3bRTx5zskQMPyNcXrPwg8IanumisGsLrqJ7NyjA+uOmfwrvaKAPFPEXw517w/wCG9Sl0TxjfNYCB2uLW7+YMu07ue5x7VS8K+I/iN4e8JaOYPDdvqulfZgYDCxEgTHG7HT8q9b8ZKP8AhCNd4/5cJv8A0A1Q+Gqhvht4dY9fsKfyoA4u1+PdhBKkOvaFf6c3R227gD7Zxmuy0n4m+EtaMa2msW4lkXcIpTscfXPH610l3plhfgC8sre4wMDzYlfH5iuQ1P4SeCtSQh9GSJmbcWgcoc/hQB18N7DdRCW3kSVO7IwYD8RXFfD/AD/a/i9m5lbVjvb1+UY/Ssh/grZ2Pz6B4i1bTZgcoPN3ov8AwHj+dcl4S0r4gpfeIl0DXYHeC+8udrqIEzOB94ZzigD6CU5FLXkcWvfF/S9rX3h2w1KMHBFvIqyN+uP0qw/xU8Q6Y4GueAtRt1YfIYG80n8hQB6oelcL4VJHxK8aKem+1xnt+6rJs/jp4ak3LfwahYyKcbHtyx/TpVDw38SfCSeMfEl9Lq8cEN7Jb+SZEYb9qEHtxg4oA9forGh8VaFcBDFrWnsHGRi4XJ/DOavpf20wDQ3MDr6q4P8AWgC1Xn+t+W/xp8NqRmRNPnbPoOR/jXfK24ZyCPUVw+qoP+Fx6I5H3tMmX/x7/wCvQB3K8Lx0paRRhcCloAK4Dxfx8RvBLDvcTKf++K7+uI8WbD478GBhlhcTkf8AfFAHb0UUUAFcJ8Wv+RRtv+wnaf8Ao0V3dcJ8Wv8AkUbb/sJ2n/o0UAd0v3RS0i/dFLQAVieLWRfCWrmQhU+yyZJ7Daa26wPGUZfwbrKjnNpJx+FAGZ8LY2i+G+iKSGzCW/Mk12o6VyHw2iMPw70JS2SbZW/PmuvHSgAooooAO1R7V9BUnamUAN2L/dFRxWltCztFbxRs5yxRACx9/WpqKACs3xBfSaZ4c1O/hAMttaySoD0JVSR/KtKo5okngkikUOjqVZT0IPagDzLwvqep2fiXRLSbULi9j1bSftk3nvuMcmc5X0XBxj2rO1XxrcjxTqF7qMd8mgabdraIbZ1UeYed8gPJH0rqrT4c2FlHeIl1eFp4/JikL/NbR5zsQ9hn1ouPhxpNxqYu5pLp4GZHntd3yTSIMK7d84HrigDltN8aaZ4Y8e+LjeRXsv2q4heM21uZBt8sdcdK6EfF/wAP5O6y1lfT/QW5qTwUf+K78cL2W7gAA7fuhXeUAefn4v8Ah7taax/4AtS/8Lf8O/8APprH/gC1d/RQB4t/wsjRv+Fmy6utrqRhOliAL9lbfu8zPT0966gfF/w/j/jz1j8bFqsLn/hdkrAHA0MD/wAi13NAHAf8Lf8ADv8Az6ax/wCALUh+L3h0jH2TWP8AwBavQKD0oA8N+IPxA0nW7PS0tINRR4L1JGMtoy5A9PU12S/F7w8Bg2msf+ALUz4pSvEvh1snb/aS59+K9BUigDgT8X/D3a01j/wBagfGDw2R8sOqE+gsmr0CkCKpyqqPoKAPIvG3xN0DVPBGsWUIv0nntWRFltWQZP8ASrfhn4paBYeFdJtJYNTaSCzijby7NmGQoBwe4rpviZGj/DnXyQNws2IOOa0fBf8AyJGhf9eEP/oAoA5j/hcvhjdt8nVcjqPsbU8fGHwzuCumpID0ZrNgK73yo858tMnvtFK0UbfejQ/VRQB5f4n+Kfhu98K6taQPetLPaSRpm1YDJUgZNUvBHxO0DSfBWiaddC/WWC1SNnW1YpnHY9673xuIYfAuuMUVR9ilGQvcqaq/DeNW+Gvh1XRW/wBCj4Iz2oAzT8XfDA+6dQf/AHLRjSx/F/wo/wDy0vVPo1qwNd2I41+6ij6KKb9nhznyY8/7goA4lfix4Rk3H7ZKhB+68DAn9K5Dwd8QtA0y98RySTT7LnUWliKwM3y49q9ia2t85MMQx/sCuF+GaR/8VJGVQldWl/hHGaAJ4/ix4QcZ/tBwTz80DZzT4/ir4SbIbUXjGPvPCwB+nFdiLW2wD9nh/wC+BSm2tz1giP8AwAUAcFL8QPh/Pu8x4Zi3BP2Qkn8cV55p03wzufFXiBdStYFspnhNozRMNnyHf06ZNe//AGW3UcQRD/gArivCtvA/xA8bhoY2AmtMAoDj90aAPN7rw/8ACBgfs95eRsScPCXOPpkVnnw14DW3E2meO9RtbhW+UTKTt/AAfzr6O+y246QRf98Ck+x2v/PtD/37FAHzvDJNBGY7b4wOmz7qSQSKp/nVC71/X4fE+nzx+O9KuriO3kWO7Mb7Y19Gymcn6GvpY2NoTk2sBP8A1zFcNqtvar8YdEjEUQ3adLlAo/vdxQB5onxT8YWLqp1zQ77BGdysB/IVZ/4Xh4ogfE1no9wvb7OZK95SxtNv/HrBn3jFPFnajpbQj/tmKAPCo/2h7xVKz+F3Zj0KTFf/AGWsrUvjTHqPiTQtSutAuYF06V3KrLuZwy44yB0r6K+x2ve2h/79iuG8UwQL8RPB4EMWx3nUjYMH5RQBzQ/aI0M9NB1fPsqf/FVIP2gtEKnfomrxjsWRP8a9Y+w2n/PrB/37FKbO1IwbWAj0MYoA8zg+PXhKT/Wx6hFgd4Qf5Gue8e/Ffwx4i0GCzsZbrzVvbeY+ZBtG1ZAT39K9s/s+y/587f8A79L/AIVwvxW02zPhe1KWkCv/AGlaqGEYHBkGRQBHD8avBb4zqEqZP8cRFaafFfwQ4z/wkVovs27P8q0ZPBPhmcDzdDsmHXBiHWm/8IB4S/6F+w/79CgCj/wtTwRnH/CSWf8A49/hWR4m+JnhGfwxqkNpr1pNPJbOscYLZYkcDpW7P8N/CE5XdoFoMf3Vx/KuT8XfC7wbp3hfV9Sg0VUuILeSVCJHwGAz0zQB1nw3If4eaEw7WqiuvHSuO+GsRi+HWhq+CTbK3HoeRXYjpQAUUUUAHamU/tTKACiiigAooooAKQ1Xt9QtLsyCC4jkMR2uEYEqfQ46VKZowQrMFLcDJoA4fwWMePvHR9byH/0UK7yuD8Ftu8eeOP8Ar8hx/wB+hXeZFABRRmkyKAOHR8/GyZAf+YIuf+/tdzXDKv8AxeqaXPTRVU/jL/8AWruM8UALSHpzRkZx3oJ4oA88+LMLz6dogj4YalHg16EvT8a8/wDii7LHoCr0bUl3fgK9ARgelADqKM0mRQByvxKZV+HOv7iMfY3FaPhDH/CGaJtGF+ww4H/ABWX8Syj/AA48QKSOLNiK0fBh/wCKI0L/AK8If/QBQBu0UZ4pMjFAHPePV3eAdcH/AE5yH9Kg+G53fDfw8fWyj/lVrxuyDwLrpZgB9hl6/wC6arfDpRF8PNAQdrKP+VAHUUUm4A0ZHrQAjYzyK87+GE6T3/i5lGFGrNx6cV6Iz4IxzmvOvhZFEs3imSPkvq77jnjigD0YdKWkHSlyKACuJ8J/8lB8cf8AXe0/9FGu2rifCf8AyUHxx/13tP8A0UaAO2ooooAK8/1OJW+N+kOx+ZdIk2/XeR/WvQK4TVl2/GXQ5AOumzAn0G40Ad0vSlpByMiloAK4fxQqn4geDsnJEk5AP+6K7iuD8TxlviV4QYDp5+f++aAO8ooooAK4P4skjwpaEHpqlp/6MFd5Xn/xeZh4YsFHRtUtc/8AfwUAd+v3RS01elOoAK5vx8c+ANez0FlLn/vmukrmvH//ACIHiD3spP8A0GgCL4cBl+HehBxj/REI+mK60dK5b4fEH4faAVA/48ox/wCO11I6UAFFFFAB2plP7UygAooooAKyvEzXCeFdWe0Li5WzlMWzru2HGPfNatIQGUg9DwaAPGvCtxZaV4j0OWyuIYLGbQ1l1Fy4EfmbsBmJ/j3ZHNV9Y8T3cvxT0SS4ttSW1gu5I4IEgO2RNmA4P8RJ59hivU4/COhRRXEKaXarFcf61BGMPznn8avPplozW7m3iZ7b/UMVyY+MfL6cUAeY6Vf+I7Xx/wCMjoOk2l6jXUJla5uvK2nyhjHBzW7/AG98Q95UeEtMOO41A4P6UngwA+PvHKkni8h/9FCu+2gUAcQur/ENvu+FNLX/AHtRI/8AZajbXfiIkmw+E9MPGcrqBx/6DXeY96TFAHja634ui+KMksnhy2e+bSwv2eK73DZ5h+bdjrnjFdYPEPjlvueEbcf797imCPd8a5RyP+JGOn/XWu7wMUAefjxL4+Wcxt4Mttg/iS8z/SrKa745f5m8JWqr6tfAH+VdsEwME5oKgrjpQB45418S+JHn0T7T4YEDJfgxb5wQ7AHiuobxD45jXevhC3Yd1+2/N+WKq/Fg+VbeH5f7mpL+oxXogX5ic9aAOGPivxkoBbwYTnqFuRupf+Ev8UnlfBN0p7l5kH9a7nb+lIUzjnjvQB45488S+J9S8G6ta3ng+4tbZoT5k7SghAO/vWx4b8T+J4fC2lRWvg+aaFLSJUk89QGAUYPWui+JCY+HPiA5/wCXN6v+DBnwPoXP/LhD/wCgCgDn08ZeKMssngi93A/wSoV/Mmo18beJ/PAfwJqGwcFkkTP869A2jFJsHrQB5j4t8Va5d+ENWgk8G6hBE9q4aWSRMIMdTg9qi8E+L9UtPBGiwQ+ENWv
ES0QLPE0eyTjqMnNdj4+yvgDXNv8Az5ydvaq3w0X/AItt4eP/AE4x/wAqAKL+M/Erf6rwPqC/9dJUH9aenjfWtoDeBtZ3jrho8f8AoVdvik2jOaAOLbxtq4Iz4H1rP+y0R/8AZq4n4feItQ006+IvCuqXYm1KSQiEp+6Jz8py3XmvaitcB8NB/pXiiP8Auas/8qALf/Cc6t/0I2ufnF/8VSf8JzrO7/kRdb2/70ef/Qq7ULxS496AOL/4TnVv+hF1z84v/iq5Tw74t1G38Z+K7hPCerTSXEtuXhQx7ocRkAN83frxXrxXg81w3hQ/8XJ8bJnnzLU/+QqAJf8AhOtX/wChF1z84v8A4ql/4TnV/wDoRdc/OL/4qu0x70Y9zQBxR8dasP8AmRtd/OL/AOKrl7zxlfn4kadcSeFNWjkXT5EW3OwyOC33hz04r13FcJrOE+MXh7/bsJ16++aAJV8dapjC+B9dYDv+7/8AiqH8e6ogy3gbXce3ln/2au1AoAI70AcUvjzVH+74G10j1/d//FVymueLr+Txz4cuH8KavA8PmhYW2Fpcjthu1ew44rgPFY8r4j+Cz2aaZf8AxygC1/wnWqnp4G10j1/d/wDxVNHj/UDx/wAITru4dV2x/wDxVdxSY5zQBxLePdURdzeBtdCjqcR//FVyPxF8XXWp+HbaNvDGr2qrf28glmRQCRIPl69T0FeyYFcJ8WR/xSNt3/4mdp/6NFADv+E/1JMA+B9d59BGf/Zqf/wnuon7vgjXm/4DGP8A2au0RQBxTgMd6AOIbx7qijLeBtdC+uI//iqxPFnjLUNQ8IaxajwfrMKS2roZpPL2pkdT82cV6ltrnfHLGDwJrki8lbOQgHp0NAFb4b71+HWghwQfsq9fTtXXjpXKfDtvM+H2gt1/0OMfkK6sdKACiiigA7Uyn9qZQAUUUUAFFFNkcRxM7MFVQSSegoAdSHpWDpHizS9bnkhsbwPIg3BWQqXXONy5+8ueMio7jxlodtqw0ufUoUvC+zyicDd/dz0z7UAYHgtv+LkeOV/6eIT/AOQxXoVcF4K/5H3xyD1+1wn/AMhCu9oAKKKKAOFRv+L3yD/qBj/0bXdVwqKf+F3SN6aGB/5FruqACkJwKWjtQB598U7f7Vp2jxsSANSi5H4/4V361538WXMVpoLAkKNSTNeiKCCcmgB1FFFAHK/Ek/8AFuPEGf8Anyf+VXvBn/IkaFj/AJ8If/QBVH4kjPw38Qf9eT1e8F/8iPoX/XhD/wCgCgDcooooA5/xyu/wHro/6cpT/wCOmqnw0H/FtfDp9bGP+VX/ABnz4I13/rwm/wDQDVD4acfDXw7/ANeMf8qAOrooooAQ9R7VwXw9R49c8ZAqQv8Aax2k9/lGa7xhmuD+HkrT6j4tZ+JP7WbP5CgDvR0paQdKWgA7VwHhcN/wtTxmwHyf6MCffy67+uE8KEf8LM8bL332p/8AIVAHd0UUUAFcBrIeT40+HVGAsenTOffJIrv64XWRt+MHh1j/AB2E6/lzQB3VFIOlLQAVwfil8/EnwcjKNoadgfQ7a7yuC8XAL8RvBTf3ppl/8czQB3tFFFABXCfFr/kUbX/sJ2n/AKNFd3XCfFr/AJFG2/7Cdp/6NFAHdL0paan3RTqACud8crv8C64p6GzkH/jtdFXN+Pgf+EB1/HX7FL/KgCr8MW3fDjQznpbgfrXYjpXDfCkn/hW2ibuD5R7f7RruR0oAKKKKADtTKf2plABRRRQAVmeI7aa98Mara2+fPmtJY48HHzFSBWnRQB4zoGqWza5ouoJ50Vroui/Z9QZYWykm7HlkY5ORu4q3r+seHNY8TWlhOjpZ2UyXbeXav5lxOfugEDjGckn+leshFGcKo3deOtIUXOdgz64oA8XttR8W23xJ8Xf8Izp9reI08RmWd9hH7sYxzXRrqfxSkAJ0TTIj6eaDj9am8FRj/hZHjmTPzC4hXH/bMV6FQB5hPqXxZjmUR6PpkyEZJEgXHt1p0msfFYR7k8PaZu/u+eP8a9NooA8Mh1T4gt8SHlfRLAaqdLCmLzxt8rzPvZz1zxXTTax8Vht8nw9pjf8AbccfrWmv/JcJP+wEP/Rtd1QB5h/bfxY2/wDIsaaD6/ah/jSDW/iyGy3hnTCvp9pA/rXqFIelAHgvxD1Lx3c6NZtrWhWNnBHexFJI7jeS+eBjPSut/tz4qK7KPDOmyAd/tIH9at/FuVBoGlxyLlZNShzntg16CpBJGOaAPNRrvxVHB8Kaaf8At7H+NL/b3xU/6FPTP/Asf416XRQB4v4z1n4jTeDtXj1Pw3YQWLWzCeVLkMyL6gZ5q14b1r4lReGNLjsvDGny2i2kYhke6ALJtGCRn0rtfiT/AMk38Qf9eT1d8F/8iPoX/XhD/wCgCgDkP7e+Kn/Qp6Z/4Fj/ABo/t74qf9Cnpn/gWP8AGvS6KAPIfEmt/EqTwzqiXvhjTorVrWQTSLdAlU2nJAz6VU8Gaz8RYPBukRaX4bsLixW1QQSvcgF1xwSM8V6b4zIHgfXc/wDPhN/6AaofDP8A5Jp4d/68Y/5UAc//AG98Vf8AoU9N/wDAsf40f298VP8AoU9M/wDAsf416XRQB5m2vfFPv4U0z/wLH+Ncn4S1jx5FqniQaZ4fsZpXv910rXOBFJt6A55GK93IBxn1rzj4Yp5eueNl9NW/9loAYviH4nof3vhGxbPA2XY/xpP+Eh+KTHCeELAAf3rsf416WOlLQB5ode+KoH/Ip6b/AOBY/wAa5fRtS+IEXjXxFc23h2ye+lEH2qJrkBY8L8uDnnIFe5npXD+GJ/M+JXjGMgfKbXH08s/40AZ7eIviYFUL4QsyxHP+mDFRP4h+KaoWPhLTvoLsZ/nXpUudnBx71534tm1W78eaHoNnq9zptvdW80ssluFLEqBj7wP+TQBDH4l+JzdfB9mPl5zdAc/nXNazrPj9vHOhXE/hqzS/jhn+zxJcgiRSBuyc8YrqLDQ7261O9sLH4i6q11Z7RcobeM7M9Oox+VZOs6Vb2XiixTUPHmqtqapsjnFvHtgDnADEDC7iOM0Aai6/8UmXP/CJacPrdgf1qJvE3xRSXY3g60Yditzx+eaqa3C/he7jiv8A4ha2kjoZSEtEk2IOC7YXhar/ANrQy2nnj4g6/KcgRwpYoJJM5IKrs+YEAnIoA2B4h+KDLx4RsAf9q7H+Ncx4g1X4gy+JvDkt54bsku4Z5WtUS5BEh2YIJzxxV5tYhiNqsXxA8QsLlmjUrYIx3r95SNmcj0q/ZeFpfE95FqFr491aWfT5Cq+bZojROw5+UqOo9qALY8Q/FBowR4SsA3veD/GiHxN8S8Mkng62Lg8EXQ2/zrUbwf4iRCx8faq3sLaH/Cue1CKWz1yDSrj4iavHduVB/wBHiKRs33VcgYUnsDQBZuPE/wAUImXHg20YH+5chsfrXLeONf8AHt7oUKav4Yt7S1F9bsrifJLiQbR+J4rrTpuprq6aTH4/1ma8K5dIrWE+WMZ+c4wvsDVK/wDCcmu6u2gX3jvVZ7mBFu/Ie0QABWBVs4AODQBdPiD4nqdw8J2G30N4Mn9aUeJPiW2GHhC02sOM3YzWRNepYaxc6Xd/ELXYpYGAmdrKMIhbpltpAB7HpXRL4J1S4iSaHx3rB3YZXVYmUjsemCKAM2bxP8UYyNvg+ybJxhbndj681n+I9f8AiDd+F9Qiu/CdvDbvbOJn+0gkLjkgV0HhaTV7TxxrWiahrdxqkNtaQSxPNGqkF85+6PatzxyXHgTWzGcOLKTBHY7TQBV+GBU/DjQ+Ofs4/ma7IdK434ZKE+HWhhTkfZgefWuyHSgAooooAO1Mp/amUAFFFFABRRRQAhOBk0bl9RSSY2HPSuH1H4i2Wn6zPZtYzPZ206W098CPLimccLg8/j0oAh8JYT4oeMkH8bQyf+OgV6BXn/hLbP8AErxhcBvuGGLA5B+UHOa78MD3oAWik3CloA4Qf8lwf/sBj/0bXdjpXBhgPjfIT0/sMf8Ao2u86igAooooA83+MqO3hWwdAS6anBgD3avRlxk1wXxYk8vwzYsBn/iZW+P++q7tT82exoAkopMijcM4zzQBy/xJ/wCSb+If+vJ6u+C/+RH0L/rwh/8AQBVH4ksP+FceIB62T1d8GEf8IPoP/XhD/wCgCgDdopNwNGRQBheNl3eBtdH/AE4zf+gmqXw0/wCSaeHf+vGP+VX/ABlz4I1z/rwm/wDQDWf8NGA+G3h1e/2JP5UAdZRSZGcUuaAEP0rgvAEZi8TeOBj5f7WGD/wAV3bNg44rhPh47nV/F/mNuYascn/gIoA76ikB4paAEPQ1w3huDHxP8WzDjKWwx/wDr+ldzkEHHNcN4ZnZviZ4xVxhVFsB9Nn/ANegDuWIAya4LxCAPi54TYDJ+yXf8hXeEgjrXF+KPDOtap4i0nWNDvrG2msI5UAuo2YMHwOg+lAGZpV7HZ/EPxjdvDcGIQQMDHCxL7FIbaP4iCRWHrbSzHxJGbC7efXIrdtPdoCG7DBH8JQ8n8661NO+IalidU8Olj0b7JJ/jWLe33xEtPE+n6O15oDteRySLMLZ8KEAznnPegDU8YWTW3wvvoZlNxfrpv2YyohZ3YgDHTPJrCvUsn8CeFTdJf2d1HbL5GoW9uzNayogHzgDOCTjn0rpPsXxCZAF1Tw/j0NrJ/jTG0z4jMpH9reHCvdfscmD+tAHCrPrerS+EvtUk1lfC/uCb+GzILqVCrMUK4G7pz9a9OOn6pY+G7iCK+mvtTIZhchEjd2zxxjbwPWsz+zviNjnVvDvH/TnJ/jWRqWp/EPTNb0nTJNQ0KVtRkaNXW1cBCoyc80AXvDw8Zf25GmrpqBs9pLvI8GzOOPujP5Vzvi7w9q114ovdL0i5SaPWXhlu0eAk2wQj5/M6DgcDrXW3Fp8R1iPl6j4fdv7v2eT/Gkt7T4h4Pm32gCTuwgk5/WgDi/C9trGi+IYrRLm/fVJNSb7ejQ5iltgMBwSMAcDkH2q141lvE+J1vcJDetpyackd61oGEgXzC2FI9OCQOcZrq00/wCIKymQal4e5GD/AKNICR6ZzWV4l1jxx4a0xL+eTRHEtxHb7UickF2Cgn6ZoAwrfR18YeNvEFva313a6Rc2lrG5e1Ym4VBgrufBB9+tLod7fWPxCtLO3TVItNikltHSaORl2qoEYJxtC8ZBHPrXXGw+Ie393qnh1QO32ST/ABpyWHxB8vMmo+H93UkW0n8s0AM0Qj/hbniMnjOn2v8A7NW1402r4K1sucJ9kkyfTisvw34b1yz8Salrms31lPNewRQgWsbIFCZ5w1X/ABypb4f65HkFjZSDj/doAqfC6Tf8N9D/AOuGPyJrtB0ri/hhEsXw40NVyQbcMSfck12g6UAFFFFAB2plP7UygAooooAKKKKAGv8Ad64rxjXfDOsSJ4g0CO0f7Pqt+l2LwkCNIRy24nowI6V7Qw3DFc/4xsbi68I6pBZMRcyQOFA/i46fj0oA4fTNFi1vX9SvPC/jW4s5Jlj8+FLVWyFG0MN3UcdRWv8A8IH4nZg//CfXuf8ArzirF8CSfbfEmhvZI3l2Ghi3vCFK4lyMI3uMGvWYzkentQBw/wDwhvi3GP8AhYF5/wCAMP8AhS/8If4v/wCig3n/AIAw/wCFd1RQB5K3hK+k8Xzf8XCuG1uO1CSBbSLcsOQRkduSO3eugHg/xcFAHxBvMAf8+MVVxJC3xunCuhb+xgjYIzu8zOPrj9K9BHQcYoA4b/hD/F//AEUG7/8AACH/AAoPhDxfj/koN5/4Axf4V3VI33TmgDx3xdockFtbQ+JviPKsZlEkKPZRA7lPXjnArooPC/im6hWa2+IdzIjruRxZQlWB71H8Qdc0nSbdrcx2x1O+iMCNKm4JGTyxODgdcDua6bwbBY2vhXTbfT5mmtYrdUjkYEbwO+D75oA5yTwh46WQGHx47r/00s4x/Jak/wCEU8cuvz+OmQ/7FnH/AFFd9RQB5P4h8M+J4/D17F4g8dQjTZEKTPJbKuVPGM4HNR6Dofim90SD+wvH8T6fEgigZLZDgLgANkcECu+8UTWsWnH7TdWlq5IW3nuo1dI5P4WweK5z4Zrcw6ZqltI8cwS/kMd9Eu2O5LYJZR04PH4UAEXhj4gbFV/GsXT732Rc/wDoNH/CLePo3ynjZJFPaS0UY+mBXoA+6KD0NAHmeseGvGE2i3ial42gSzeFlnLWyqoUjnnHFQ+HvCnjaw0a1tNP8X2Zs44lWDFuGwgHGDjmovi5Nqk2ntZppF3daYltJJLLA4C78YXd7L1x3rsvAs0s3hDSjPaSWsq26oY5DzgDr+PX8aAMR/DPxBPzJ40g3ehtVx/Kg+HviLtyPFljvA/59uD/AOO16DRQB53JpnxCijLXXifSI0VSWbyCAAO/IrnPDmheK/tup3Wh+NNDuxdz+dcmJd+WIxzgcV6R4wsbLUvDt1ZX9/8AYbedQhnL7QpJ4yfT2rkvhjBPpy6xpST297aWs6rBfQQLGJfl5BI4Yj1yaALn9jfEh1yPEulDPpbn/CmDRfieuV/4SPRmQ92t2z/6DXoKHKCnUAedHRfikHBXxFom0HODA3/xNY9rpPjHT/Et4/8AwlPh9NT1UozwmNtzbF2jauOmK9bkz5T467TXiPgjUNWsfEdrNcXkNzc6rqU8V7atAPPg252kt94LwMDgc0AdW+i/FJsFfEmiqe/+jt/8TTzpPxR2rt8QaFkdc27f/E16F2ooA8//ALP+KK8nW/D/ANfs7/4VzusweK4Nfsrm/wDGXhi21GCNkhjlBQkPjJ2kc5wMV6/Im9cZwexrgPHOi6dealpOnrZQvqGo3iu1x5YLrFFhm564wAPxoAih0j4nuyTf8JFojLjIHkNg/wDjtXP7L+JR66/oq/7ts3+FdxFxGAAABwMU+gDgRpfxNBI/t3Qynr9nbP8AKsLXNI8aQX1hq2oeKvD0Bsnby3nRkXcwxjp6CvWz0ry34pi6e50WOwkiivgZnjludoh27PmU7uNx7UAXreD4k3USSReIPDrxuMq8cDEEeoOKm/s34og/Lrfh8j3t3z/KrPwtltpPAGlm0hlhi2sPLkbJDBiGOe4JyR7EV2tAHn72PxQRdx1vw/8A+A7/AOFc94m0rxpq0NtpWseKPDULSTxywxlWR3dGBGBjnmvXpOg4714t8SbHUrLVdXlhtre9Gs28VraoZR51vIG/gXqRnnIxQB1sem/El0YHXtEHPO23b+opq6V8UVY/8T3QGH+1A/8A8TXW+HYJ7Xw7p0F0SbiO2jSUlsncFAPP1rUoA8/OmfFHnGt+H+f+nd//AIms7UNH+IWo282kXWv+Hh9oiZGUROHKngkcV6jXmfiMCL4t2Zt9q3D6HdY28Fnz8v1PpQB0ng6O00TRrTw0dStbnULCIJMkbjcvuR1A5rqx0rwbwgHZ/AeMHVBeXZ1DH+t25P8ArO+M4617yOlABRRRQAdqZT+1MoAKKKKACiiigApCAwwaWigBixIv3VA5zwKcBilooAKKKKAI/Jj8wvtG498VJRRQAE4GT2qJ3H3WdRn1qWvKvitp9u/iHwrMNKOoSS3Mkb26SbDMAhOM5x15oA9IljikVtoUkjGeDTkdYx8hXkYzngV4v4hF3ofw+1+60rSH8PSvMkcsTTMzFODuUg4yc4OKo2WjkeIrXTL+y0w6culDUXgV5QgJxlx83DnAHpQB77G5ctkjjpink47V5DpvxZv4rOS7vNBli0sW3mW8qhhznCozPwSRjkVL4u8YeNtM8J3F+9jp9qp8l4bmB2YYc4KkH+Lkc9OtAHp10kUoZZ4o5Exkq4yD+dTRwIsahV8tQMBV4Aryy+8Tatp2qajcR6TYz6tFpMN0zCSQrKAeQB2xnjjrSXfxbvIdOhu7WwtrlJbaFVWIsSLqQfc47DDe9AHrQGBioWlBUjcoPTk1yfgnxVrPiKyvH1XSfsE9vIFX5HVZFI6gNz7VzPg6wg8erqWua/5800V/JFbQ+ayi2Vem0KRzz1oA9RRUIKEZDdQR1FPEax8qCMdhXnbanrPh27PhfQIl1O9tLdr6aXUZWyY3c7UUjktxjmst/i3qd+qjStGg3iyku5PtUpAUxkhx8v8AunFAHrDOV7jrxSxsWznH4V4tqur6t431vwmkdtbjT9StJL
g2sk7pllA3Ele46r+tWNE8cT6Va2umaPpTyPNqktgPtl0z4cDKnd6etAHrV7a215H5N1DHNE33kkTcD+FOt7O2toFhggjiiUYEaKAoHsB0ry1/H39q2+ntqGmOLy11lbKUW05CCTGcjuy4PQ1bvfijdaZqd7HPpMa6fY6h9hnkE2XyVypUdD70Aen9BUe/5iuRkV55ffE+WDXXsrfTFlhju47Jy0uyQyuMgqMH5femfGe7uLLwB9st7qa1uVnj2tDKynnqOOtAHookJ7cZ9ahi0yxhvZL2O1hW6kGHnCAOw9C3U141ZeJ7/wAPz3PiCzg1W58O29nH58V/IwLSsQAY9+eBnmty++LV9YSpbS+H5PtjRi5ESuXzC33cFQfmPPXA4oA9Uorz21+I8174isdMh00wCeGOaRbx/LkIcZ+QdDt7jrVP/haVy+m69qKafAsGl7sQvLiY7WCncvbOcgigD06ont4pJUlaNTJGCEfHK564NcFe/ExrBJpZNLaSOPSU1QbJQCVLBSvTqCf0rLv/AIwzWVta+doM8FxdRi4gjaQPvh4w2VB5JyAKAPVVUKMCmNIVY47VQ8Pav/b2hWmp/ZZ7UzpuMM64dDnHNcrrGrXV548k0y2kaOHSbMXsyBivnOc7FJH8IwfzoA7zqvI7VQvdPsb+2EF9aQ3UIIYRzRhlz64NedaT8UdQl8O6fe39lapPf3UsMTGbZEoXn5ieh7CotTn1fxP4+0zSbpZbKxksDcbILwrIrEjLZXgkdPTFAHqVvDHAiRwxrGijAVQAMfhViuL8F3lxFquteHrm4kuW0qdEjuJDlnjddyhj3K5xmu0oAQgHrVY6bZG8F4bSH7UF2Cbyxv2+meuKtUUAIFCjAFLRRQAVSk0jTpb9b+Sxt3vE+7O0QLj6NjNXaKAKcWlWEF9NfQ2cEd3NgSzpGA7gdAWHJq+OlMp46UAFFFFAB2plPpuDQAlFLg0YNACUUuDRg0AJRS4NGDQAlFLg0YNACUUuDRg0AJRS4NGDQA09DXL694YGu6nY3r6jdW8tizPAsO35XIwW5B7cV1WDSbfagDz3Vfh0+uWd1FqWv6hcNcKsTO4XCxg7toUADk9+vFWrXwHDDq8OoT6jcXUiWYsSjqoVosYwcCu4x7UbfagDz6D4YaWunyafc3uoXWnAMlvayTnbbq3XHqfQnp2pp+GkFz4cn0i71jUblWVUheSTIhRG3KAvQn3PPFeh7fajHtQBxuleD7mx8Q/2tcazNelrYWzRywoNygeoHrmqUvwy0T+wbnR4zLCJbpryOaI4kik7FcdhnAFd/j2o285xQBz2haJLpCv9r1O71G6lAV5p2AwBwAFHA/rWPN4ImtNSu7zQtdutJ+2v5txDGiyKX7sNw4/Cu52+1G32oA4eXwK/2yO/0/XL611MQtBPduFkaZSScEHgYJOMdKyz8LLeOfNlqdxar9iktGUxh9wcku2T3JJPtmvTNvtRj2oA850z4c3OmT6PNBr0pOkwvBbBrZT8r9c881Ha/DF7W4tbga7IzW1+1+mbdeZD1/CvSse1G32oA80i+FzW8hlj1yUbtR/tI5t1/wBZjA79MU3U/hb/AGoL8za1J/pt6t9JiBfvhcAfTFem7fajb7UAeIS6R4iPizUby1tLiPVXnzarLZRSQbVACsZCcrwCeOe1d/4u8Ht418PW+l3t6bbaySStEgbLAdsnpkmuwx7UY9qAOQ1vws2t+C18Nz37opVEedYhllU5HH4CqF34DuZtQs9Ss9duLPUYrVbSWWOFWEsY6HaeAa77b7UbfagDz66+HZu7y0kutYnnt7eSOVFliDSgoBnEnUBjyRVSb4XQX016+oapLMLi2eANHEEfaxBBcj75GOM16Zt9qNvtQB5bJ8LLm4hmjuPE1xL5tj/Z3zWyDEIYMBx34q/cfD2dk0ia21p7S+062+yC4SBWEkWeAVORx616Ht9qNvtQBn6Lpx0rS47Vrua7dSS80xyzsev0HsK53VdBuY/Ga6xZwGWG+tzZX4DAFF/gkGeuMkEV2WD6UYPpQB5f/wAKvni0AaFHrayaesjlIbi0Vwqt1567hng5rR0zwPLoGrWGow6jJcrp9ibVIHjBeVep+YnqT+Vd/t9qNvtQByPg/Sr6G/1bXNTjEF7q0yu1srBhCiLtQEjgnHJrrqNuO1Lg0AJRS4NGDQAlFLg0YNACUUuDRg0AJTx0puDTh0oAKKKKAP/Z” />
– شکل 4-6- فاکتور تنش سربار تصحیح شده
برآورد ارزیابی لایه های مشکوک به روانگرائی با بهره گرفتن از روشی روبرتسون و راید را میتوان توسط نرم افزار روانگرائی انجام داد. و این را در نظر داشته باشید که این نرم افزار نمی تواند معیارهای چینی را که در فصل قبل بیان شد لحاظ کند. بنابراین در ورود داده ها بایستی برای لایه های غیر روانگرا محتویات ریزدانه را 101 قرار داد.
4-5-ضریب اطمینان
هنگامیکه با بهره گرفتن از تست نفوذ مخروط و تست نفوذ استاندارد به دست آمد ضریب اطمینان در مقابل روانگرائی F.S با تقسیم بر CSRM محاسبه می گردد.
4-21
: CSRدامنه تصحیح شده فاکتور دامنه
[15]MSF ارائه شده توسط مرکز تحقیقات ملی زلزله در سال 1997به صورت زیر است.
4-22
اگر F.S<1 باشد ، لایه قرار گرفته شده در عمق مربوطه ، روانگرا خواهد بود.
JkyuGAUhtwVQMAEmug1HwlbzL4eh0/yrO10e8W4SFE4KhWXaPT72c10lFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXMXX/AB9zf9dG/nXT1zF1/wAfc3/XRv50AdJH/F/vGn0yP+L/AHjT6ACuQ8deG7zxDFaGyiiee3EvlvJcvD5TsuFcbQQ2PQ119FAHAeKfCuu67b2gC2MslvbXFmfNkKq4liVfOwFOGDA/L6HrXbWtu1rp0FuZCzQxKhfuxAxmrNY3irWW8P8Ahm91NIRM8KgIjHALMwUZPpk80AS2EFxc6dbTyahdb5IldsbMZIz/AHasfYZf+ghd/wDjn/xNYngPWpta8OA3EKRzWczWj+WSVYpj5hn1BH45rp6AKf2GX/oIXf8A45/8TSfYpdwH9o3XT/Y/+Jq7XIXviq/tPHEOlSWccWlyPHAt06sTJKyltoIPHQdR60AdH9il/wCghd/+Of8AxNQwoly0qw6tPIYn2SBGjOxvQ/Lwa0q4mzP9g/E68tW+W11uAXEXp5ycMPxHNTKVrFxjzJnUmylwf+Jjdf8Ajn/xNAspdo/4mN10/wBj/wCJrL1/Xr3SdW0W1hskktb+6FvLcPJjZlWOAvUn5evSszwr4zu9e1f7LPaQxQTwS3Fs0bEsqxzGIh88ZOAePcVRBvWckN+062urXMjW8hilA2Daw6j7tWvsMv8A0ELv/wAc/wDia5eNv+Ee+IckbfLZ6ym5T2Ey/wCP9RXYTvJHbyPFEZZFUlYwQNx9MngUAVvsUu7/AJCN10/2P/iar2qtdGULfXitE5Rgdn/xNchL461z/hG7bUYdJhadrm6juVUmRYI4WcFuCC33R09+K6e1ukF3aXyOrW+owq29QQpYjIIzzyK5sRUlTcZfZvZ/Pb8TSEVK66mj9il/6CF3/wCOf/E0jWUoUkajdA4/2P8A4mrtcprviTUtM8RWdhbW9pcRTlS0Ssxn2c75CAMKq8depOK6TM3/ALFL/wBBC7/8c/8AiaPsMv8A0ELv/wAc/wDia5rwZ4wu/Elw8V3awQh7OK+hMLE4jkZgFbP8Q29vWuxoAp/YZf8AoIXf/jn/AMTSfYpdx/4mN1j/AIB/8TRq1zPZ6Vc3Nv8AZ/NjQspuZNkY92bsB1rhLjx9rsOkW1//AGVD9nLTyTXex/LFuhAWYLkMAwJPfgZ70Ad59hl/6CF3/wCOf/E0fYZf+ghd/wDjn/xNWYnEkSSKQVYAgjvmn0AUmspccajdf+Of/E0v2GX/AKCF3/45/wDE1zfiHxZfaBrlvFJbW0mmylk3qzeYrCNnwTjaCduAvU9c1J4M8U3niE3Ed9bwRSxwW9ypgYlSkybwpz/EMYPrQB0H2GX/AKCF3/45/wDE0fYZf+ghd/8Ajn/xNXKo6tcXVtpsstkIDcDAQTsQvX25J9AOp4oAUWUuT/xMbr/xz/4ml+wy/wDQQu//ABz/AOJrgv8AhYmqmx068OnQRW7BxqEzBmW2ZZvKwQDkHOSeuK9J7UAU/sMv/QQu/wDxz/4mkNlLjjUbrr/sf/E1drzzXPijbaZ4ju9Nt44JorO0uJJWMoDtNGoby1Hpg8n646GgDt/sUv8A0ELv/wAc/wDiaPsMv/QQu/8Axz/4msjwnr93rS6hDfwwR3NlMkbNASUcNGrjGeeN2Pwro6AKf2GX/oIXf/jn/wATSac0pFyksrS+XMUVmAzjAPYD1qj4p8R23hjRmvpyhkZhFBG7hA8h6AseAO5PYA1w+i/EPULo6fd/Y7dNOvTA91dgM6RyykL5YweOeMnPJ5oA9TooooAK5i6/4+5v+ujfzrp65i6/4+5v+ujfzoA6SP8Ai/3jT6ZH/F/vGn0AFFFFABUF5a297ZzWt1Ck0EqFXjkXKsPQip6RvuN9KAMzw5Y2uneHrG3s7eOCEQq2yNcDJGSfqTWpVPSP+QNY/wDXBP8A0EVcoAKzn0LSpNYXVX0+2a/UcXBjG/gYBz644z6Vo0n8X4UALXL+ONIuL/R473Tx/wATLTZRdW2OrEfeX8R/SuoopSV1YqMnF3Ri6Xead4p0fT9UWJJQCJow4yYZQCD9CMkVasdE0vTrqe7srC3guLg5lkjjAL855/Ek/U1yV9HN4D1qbVbaJpPD16+68hQZNrIf+WgH909xXb2tzDd20dxbypLDIoZHQ5DD2qYyvo9ypxS1WzMfxboba5ozJAdt5AwmtnBwQ47Z96Twp4hXXdN/ejy76D93cwngqw749DW/XJ6/4Zuv7RGueH5Vt9TUfvIzwk49D7/596szNW48M6Hd262txpdpJCkjyqjRjAZySx/Ek59c1cvLGO4sjbqAgUDy9oxsI6YrB0fxpa3VwLHVI203Ul4aKbhWP+yf8/jXU8EVE4RqRcJbMabTuihp160ytBP8t1Fw6nv7ioLrw3ot3qi6rcabbSX6BdtwyZcbenPtVm809LorIrNFOn3ZF6j/ABFVzc6haKVuLbz1A/1kPX8VrlhVnQXJVTaWz3+/zNXFT1j9xNpuiaXpDTNp1hb2rTndIYkC7j/knj3q/VGHVrOVthk8t/7sg2n9aug55HIrpp1qdRXg7mcoyjuivf2FpqllLZX1vHcW0oxJFIMqw9xWZ/wh3hzyIrf+xbIwwsWjQxAhScZ/A4HHTityk7mtCRQABgcAUUUUAZsugaRNqg1STTrZ74DAnaMFumPzwSM+lP0zRdM0WKSPTLGC0SRtziFAuT0/lV49KWgAqvfWFpqdo9pe28dxbvjdHIuQccj9asUUAY3/AAinh8/ZgdHssWv+pHlD5Od38+ee/NbNJ3NLQAVSuNK0+6nWe4sreWVUaMO8YJ2vgMPocDNXaQ9KAKem6Tp+jWxttNs4bWEtuKRLgE+p/IVdoooAZJFHMhSVFdT2YZFc/p3hfQlunmXSbQSWkwS3YRD92FVdoH07eldHVLT/APWX3/Xyf/QVoAu0UUUAFcxdf8fc3/XRv5109cxdf8fc3/XRv50AdJH/ABf7xp9Mj/i/3jT6ACuO8b+K7/w60EdhFbMxtbm8ka4DEFYVDFBgj5m3de2Ohrsap6hpOnaskaajY212sTb0E8QcK3qM9KAOV8V+Mr3SbawfTobbfPZz3sn2nJAWKNXKDBHzHcOe2OhrrbW5+1adDdbCvnRLJt7jIziq114f0e9UrdaXZTgy+cRJArZkxjdyOuABmtAgCMgDAAoAqaQf+JNY9f8AUJ/6CKuZqppH/IGsf+uCf+girlACZ+tJn5v/AK1OpP4vwoAM/WjP1paKAGSqkkTpIgZGGGVhkEVws9hf+BJ3v9Ijku9Bdt9zp68tb+rxe3qtd4elHVe1TKNy4T5fQqabqlnq9hFfWM6zW8oyrr/L2PtVvNcLqun3PgrUZde0aJpNLlbdqNgg+7/01jHYjuK7OxvrbUbKG8tJVlgmUOjr0INKMr6PcJwSXNHYq6rouna1CYb+1SUY+ViMMv0PUVy72PiHwf8AvNOlfVtKXlrWU/vYx/snv/niu5/i7dKWrIMrQ/ENh4gtPOs5Msv+sibh4z6EVpsflPbjuK5PxB4Wl+1/21oDi11SPlkXhJx3BHr/ADq/4b8Sw69aSI6fZ9Qg+W4t36qfX6UAbMtvBcLtmiVwf7y1QbTp7Q79PmKj/njIcofp6Vq0VhUw1Oo7tWfdaMuNSUdOhRtNSSdzDKhhuF6xt/Meoq4DzVa9sYrxBuysi8pIvVTVezvZEn+x3uFnA+Rx0kHqPeso1Z0pKFbZ7P8AR9n+ZTipLmh9xpZoz9aWiuwyEJ4ozQelLQAmaM/WlooATPJozR3NLQAmaCf84paQ9KADNGfrS0UAJmqen/6y9/6+T/6CtXapaf8A6y+/6+T/AOgrQBdooooAK5i6/wCPub/ro3866euYuv8Aj7m/66N/OgDpI/4v940+mR/xf7xp9ABRRRQAUjfcb6UtI33G+lAFTSP+QNY/9cE/9BFXKp6R/wAgax/64J/6CKuUAFJ/F26UtJ/F+FAC0UUUAIelA6Cg9KB0FAAyhgQQCCMEGuDjz4A8RLCSR4c1OX5M9LOc9vZG/Su9qlq2l2us6XcafeJvgnTaw7j0I9x1qJRvqty4SS0ezLYOTxjpTq47wdqd1bXFx4X1d92oaeB5Mrf8vEH8L/UdDXY04y5lcU4uLsFcl4p8PXBuF1/RT5Wq24yyjpOvdT74rraRvunp071RJkeHPEFv4h00XEQ8uZPlnhPWNvT6VsVxHiLS7rQdTPifRUJx/wAf1svSVO7Y9f8A9frXVaVqlrrOnRXto+6KQfip7g+4oAu1VvLOO8iKPww5Rx1U+tWqTvUThGcXGSumNNp3RnWN5IJTZXmBcL91u0g9RWlVS+skvIgMlJEOY5B1U1FY3zs5tbobLpPyceorlpzlRkqVR6PZ/o/P8zSSU1zR+aL56UtIelLXaZBRRRQAnc0tJ3NLQAUh6UtIelAC0UUUAFUtP/1l9/18n/0Fau1S0/8A1l9/18n/ANBWgC7RRRQAVzF1/wAfc3/XRv5109cxdf8AH3N/10b+dAHSR/xf7xp9Mj/i/wB40+gAqnqGrabpMSS6lqFrZRu21XuZljDH0BYjJq5XD+KPCGrauqtFfJdzI8rW7zytbm0LrhShiHzbfRgc+tAHWXmrabp0MU19qFrbRTMFjeaZUVyegBJ5q0xBQkHIxXC+JvCeua5BahZbF5be2uLMtKzAOksaqZcBeHBUnb0weors7W2Nrp0Nt5hbyYlj3HqcDGaAGaR/yBrH/rgn/oIq5VLSB/xJrHn/AJYJ/wCgirmPegBaT+Lt0ox70mPm60AOopMe9GPegAPSgdBQRweaAOOtAC0UmPejHvQBynjTSLmaKDXNKX/ibaYfNiA/5bJ/HGfUEdPetvRNYttd0e21G0bMUyZx3U91PuDxV/HzfhXDW4/4Q3xqbQ/Lo2tuXh/uw3PdfYN/Os37sr9Gax9+PL1R3dI33T06d6PxpGHynnt3rQyFIBXBGQa4K+t5/AmsNqdnGz6HdP8A6VAvPksf4h7f/q9K73HvTJoI7iB4ZkEkbqVZWGQQaAEtrmG8to7i3kWSKRQyOpyCKk7muAie4+H+qiCVnl8PXT/u3PJtnPY+1d7G6yoskbhkYBlYHIINAD6qX1il4g5KSocpIvVTVrHvRj3qKlONSLjJXQ4ycXdGbbX7pKLS+Ajn/hf+GT6e9aWahubWK6hMcyBlPr2+lUNt9p3C5u7Yds/vFH9a5VOph9J+9Hv1Xr/mjS0Z6rRmtRVS21C3u+I5MOOqNww/CrX411QqQqLmg7ozcXF2YdzS0mOTzRj3qxC0h6UY96CPegBaKTHvRj3oAWqWn/6y+/6+T/6CtXMe5qnp/wDrL3/r5P8A6CtAF2iiigArmLr/AI+5v+ujfzrp65i6/wCPub/ro386AOkj/i/3jT6ZH/F/vGn0AFFFFABSN9xvpS0jfcb6UAVNI/5A1j/1wT/0EVcqnpH/ACBrH/rgn/oIq5QAUn8XbpS0n8XbpQAtFFFACHpQOgoPSgdBQAtFFFACfxdulZHifQo/EOg3Fgx2Skb4JB1jkHKsPxrX/i7dKWk1dWY4txd0c74N1yTW9EH2sbNRtHNteRnqJF4J/HrXQt909OneuI1Mf8It49tdVX5dP1nFrd+izD/Vv+PIrtz909Onepg3az6F1Er8y2YtFFFWZle+srfUbKW0uohJDKu1lNcXpF5ceDdYXQdSkL6bOf8AQblv4f8AYNd5WZrui22vaXNZXAA3DKOOqN2IoA06K5PwdrFzIJ9C1Q41KwO0k/8ALWPs3v2/SusoAQ9KWkPSloAqXWn293zImHHR14YfjVPzrrSyPtDG4tenmgfMn19a16RlDKQQCDwQa5qmGTfPT92Xf/PuaRqNK0tUNjdZFDowZWGQR3p9Y8GdLvxbE/6LOcxE/wADf3a16qhW9pF8ytJaNf1+Apx5XpsLSHpS0h6VuQLRRRQAVS0//WX3/Xyf/QVq7VLT/wDWX3/Xyf8A0FaALtFFFABXMXX/AB9zf9dG/nXT1zF1/wAfc3/XRv50AdJH/F/vGn0yP+L/AHjT6ACis6/1VLS4SzjjeS9mRmgQxuI2IHRpApC/jXn918Qtch8P2l0U0+K7ZNQmmLIxjItnIEa/MDlvX26UAeo0jfcb6Vw3i3xnfaVbWDacLWOSa0uLuU3ILAeVGr+VwRhju69sdK7G1uTdabBcshQyxK5TuuRnFADNI/5A1j/1wT/0EVcqlpB/4k1j/wBcE/8AQRVzPtQAtJ/F+FGaTPzdKAHUUmaM0AB6UDoKCeDxQDxQAtFJmjNAB/F+FLTf4unalz7GgDH8U6Kuv+HLzTzxI6bom/uyDlT+YqDwdrLa54WtrmYYukUw3KnqJU4bP5Z/Gt/NcTpH/Ej+IeraVjbbapEL+3B6eYOJB+PWs5aSTNY+9Bx7anb0UgNGfY1oZC0nc0Zozz0oA43xpayabdWfiiyX99ZsFuVH/LSI8HP0z+vtXXWtxFd2sVzCwaKVA6EdwaS6t4ry1ltpk3RyoUYHuCMVy3gW4ltre+0G5YmbTZyi57xnlT/P9KAOuPSlpCeOlGaAFopM+xozQBU1G1+12ciDiQfMh9GHSl066+12Ucp+9jDj0I61a7nisuy/0XVrq1/gkxMg+vWuOp+7xEZraWj/ADX6o1j70HHtr/matIaM0E8dK7DIWikzRmgBapaf/rL7/r5P/oK1czVPT/8AWX3/AF8n/wBBWgC7RRRQAVzF1/x9zf8AXRv5109cxdf8fc3/AF0b+dAHSR/xf7xp9Mj/AIv940+gAqjLo2lzwJBNptnJDHIZUjeBSquTksARwcknNXqKAKU+jaXdAi402zmBl84iSBWy+MbuR97HfrVxuEI9qWkb7jfSgCppH/IGsf8Argn/AKCKuVT0j/kDWP8A1wT/ANBFXKACk/i/ClpP4vwoAWiiigBD0oHQUHpQOgoAWiiigBP4vwpaT+L8KWgArivH6nT5NF8RIOdPvFWU/wDTKT5W/pXa1keJ9NGr+GNSsCMma3YL/vYyP1AqZq8S6btNNmsCCoI5BpawPBWpHVvB2l3bHMhgCSf7y/Kf1Fb9OLurkyXK2gpO5paTvTELXHakP7H+IenXw+WHU4jbS+m8fdP8h+FdjXLePrV5PDTXcI/f2MqXKH0wef0NAHUHpS1BaXKXljBcx8pNGsi/QjNT0AFFFFACdzWXqf7i+sbvsH8tvo1anc1R1iIzaXOB95RvH4c1y4yLlQk1utfu1NKTtNX6l+kPSorSUT2kUo/jQGpT0rohJSipLqQ1Z2FoooqhBVLT/wDWX3/Xyf8A0Fau1S0//WX3/Xyf/QVoAu0UUUAFcxdf8fc3/XRv5109cxdf8fc3/XRv50AdJH/F/vGn0yP+L/eNPoAKKQkAZJwBWTP4p0G2sIr6fV7KO0ldo45mmAV2UkEA9yMH8qANekb7jfSqN/rel6XBDPf6hbW0Ux2xPLIFDnGeM+1XSQYyQcgjgigCrpH/ACBrH/rgn/oIq5VLSP8AkDWP/XBP/QRV2gApP4vwpaT+Lp2oAWiiigBD0oHQUHpQOgoAWiiigBP4unalpP4vwpaACkblTxnilpG+6eM8UAcZ4C/0G68Q6IeBZagzxj0jk+Za7SuLh/4l/wAW7hOianpyyfV42x/Ku0qKe1uxrV+K/cKTuaWk7mrMhar31qt7p9xav92aNoz+IxViigDmPAdy1x4St4pP9bas1u4PYqeP0xXT1yPhf/Q/EniTTewuFuUHs4yf6V11ABRRRQAnc0jqHjZT0YYpe5paTV1ZgZuhsTpwjP3onaM/ga0T0rL0391qWoQdPnEgH1Fah6Vy4F/uIxfTT7nY1rfG331+8WiiiusyCqWn/wCsvv8Ar5P/AKCtXapaf/rL7/r5P/oK0AXaKKKACuYuv+Pub/ro3866euYuv+Pub/ro386AN24vLbT7Se7u5kgt4ss8kjYCisO08f8Ah67ukt1ubiEyMFikubSWGOQnoFdlC8/XmneNJLqLwVq72QmNwIzt8lcuORkr7gZI+lcf4OayXxjb22jWPiC3spbOR71NUEhRzlfLcbyeT8/I60Aeh32mNf3MbSXkotNjJNZ7EMU4Ix82VJ/IiuMuPh/fDw9Z6fayWa3FtNdvFKJJYjB5zsVZChHKgjg
jB9RXolFAHDeJPCOta3DbBbyzMsFvPZb5g3zxzRqpkOBw4Kk46HPUV2FtbC006G1DlhDEse49TgYzVmkb7jfSgCnpA/4k1j/1wT/0EVcxVTSP+QNY/wDXBP8A0EVcoATH1pMfN+HrTqT+Lp2oAMUYpaKAEI4NAHH4UHpQOgoAMUY+tLRQA3Hzfh60uPrR/F07daWgBMUjD5T349adSN908Z4oA4vxb/oXi/wlqQ4X7U9o59pFwP1rtMVx3xMQr4SF8o+ewu4Lkfg4H9a6+NxLEki/dZQRUR0k0ay1hF/IdijHNLSdzVmQY+tGKWigDkpR9j+JsTdFvrAqfdkOf5CusxXKeLP9G17w3fj+G7MDH2cY/pXWUAJijH1paKAExyaMUdzS0AZX+q8Rj0mt/wBQa1COKzNQ/d6pp83+20Z/EVpmuPC6TqQ7P80ma1NVF+QY+tGKWiuwyExVPT+JL7/r5P8A6CtXapaf/rL7/r5P/oK0AXaKKKACuYuv+Pub/ro3866euYuv+Pub/ro386ALXijSrjW/Cup6basomnQqgc4VuQdpPocYPsaw9EsdY1DxdZ6ve+H4tEisbN7UhbhZGuAxXavy8BF2kjPrXap0f/eNec+G/E+o+KvFFuJNb0u2jtxKW06ymZpjhgMSBlwcYIyD347UAelUUUUAFI33G+lLSN9xvpQBU0j/AJA1j/1wT/0EVcqnpH/IGsf+uCf+girlABSfxdO3WlpP4unagBaKKKAEPSgdBQelA6CgBaKKKAE/i6dqWk/i6dqWgApG+6eM8dKWkb7p4zx0oAxPGNp9u8G6xbgZLWkhUe4GR+oqTwpd/b/Cek3Ocl7WPP1wAa054hNbSxMMh0Kn8RXK/DOUt4ItYGPz2sksDe21z/So+2arWm/JnX0nc0tJ3NWZC0UUUAct8QFI8M/al+9a3EUwPphsf1rp42Dxq46MARWR4rt/tXhTU4sZP2dmA9wM/wBKm8O3H2rw3ps+cl7aMk++0ZoA06KKKAE7mlpO5paAMvW/ltoZv+eU6t+tafUVR1pN+kXA9Fz+VWbd/MtYn67kBrkhpipruk/zRq9aa9WTUUUV1mQVS0//AFl9/wBfJ/8AQVq7VLT/APWX3/Xyf/QVoAu0UUUAFcxdf8fc3/XRv5109cxdf8fc3/XRv50Abd1NPb2VxLbWpuplJKwBwhf2BPGcetea+FrvUNI1y206ODXJRIJBHZ3lhb20ca5BY+aDuYLntnqK7rxNqM+k+GtQvrZ1SeLGxnj3gEsAMrkZ6+orkNCutYv/ABzpc2r6ja3XlLf28S29mYcMjRq5JLtkZAxQB2Wva2mmQSReYbedoHkS5lt3e3i2gnMjDgD2JGa87uPiFrsekJcx3dgY3W7uILqSHHnxwojIhTd8jOWPfOAOK9amhiuImimjSSNxhkdQQR7g1VGj6YsKwrp1oIlfzAghXAb+9jHX3oA43xh4zvdMtbBtPmtbd5LW4uZjMu/DxRq4h6jDNu+vFdta3D3OmwXDxlHliV2T+6SM4ol06ynBEtnbyAv5h3xA/P8A3unX3qw3CH6UAU9IJ/sax4/5YJ/6CKuZ9qqaR/yBrH/rgn/oIq5QAmfY0n8XSnUn8XTtQAZ9qMn0paKAEPQ8UDp07UHpQOgoAMn0oz7UtFADf4unalyfSj+Lp2paAEz7UjZKnjtTqRvunjPFAB+FcZ4AP2eXxHYEf8e+rSkD0VgCP612nauM8O/6N8RfFdr0Eot7hfxUg1EviTNYfDJHZZPpR36GlpO9WZBk+hoyfSlooAhuohcWk0JGRIhQj6jFc/4BmMng2yU/eiLxn8GNdKelct4H/dQavZ/8++pTKPoTkUAdTn2oz7UtFACdzwaM+xo7mloAgvEMllOmPvRkfpVfSX8zSbY4zhAPy4q8wypHrWZoX/IM2f8APORl/WuSemKi+6f4NGq1pP1X6mn+FGfalorrMhMn0qnp/wDrL3/r5P8A6CtXapaf/rL7/r5P/oK0AXaKKKACuYuv+Pub/ro3866euYuv+Pub/ro386ALHivSn1vwnqenR3Mds86YWaQkKhBBySOR061518NRYL4yktHe/u9QtY5XN1DqJvLLLkbzkgFXYgHBru/HsZm8CavGIHnyq5jRC5Yb1yNo68Z4rl/BviJ7zxJYaXbW93Z2iNfuYXsmt4zFuTycAqASFz7jPNAHqNFFFABSN9xvpS0jfcb6UAVNI/5A1j/1wT/0EVcqnpH/ACBrH/rgn/oIq5QAUn8XTtS0n8X4UALRRRQAh6UDoKD0oHQUALRRRQAn8X4UtJ/F+FLQAUjfdPfilpG+6fpQAvauMT/RvjDIOgutHB+pWT/Cuzri9c/0f4n+GZx/y3guYD+ADCon0fma0t2vJnaUnc0tJ3NWZC0UUUAIelct4d/ceLfE1t2M0UwH+8vNdSelctafuPiXqCf8/FhHJ+KnFAHVUUUUAJ3NLSdzS0AFZWkfK99F/duGP51q1lWPy6xqKepRv0rkr6VqUvNr8P8AgGsNYSX9bmrRRRXWZBVLT/8AWX3/AF8n/wBBWrtUtP8A9Zff9fJ/9BWgC7RRRQAVzF1/x9zf9dG/nXT1zF1/x9zf9dG/nQBtXpvl0+5OmpA94M+Us7EIT/tEc4rmtP0/xZeeK9P1LXYdJht7OCdFFnNIzMZNnXco4Gyuvj/i/wB40+gCK6uoLK1lurmVIYIlLySOcKqjqSax28ZeHVskvG1a3EDymFWJP3wMlcYznHNTa1pd9eqZbDUHgmWJkSGRVaB2I4Mi4ycegI6Vx0nw91SfRkgnudPk1HzZpJL0iYOXkQL5oIYYcY4GMYAAxQB2+pa9pWkQQzahfQ20c5xG0jY3cZ/LHJPar5YNGWUggjII71xXiHwdq2tQ2wGo23mwW89mHljY74pY1VnPP3wVz6HNddbWq2mnQ2oZmWGJYwSeTgYoAj0j/kDWP/XBP/QRV2qWkD/iTWP/AFwT/wBBFXMUALSfxfhRgUmPm7/nQA6ikx/nNGKAA9DQOgoI4PWgDjv+dAC0UmKMUAH8X4UtNx83fp60uBQAtI33T9KMUjAbT16etADq4zxp+48QeEbv+7qPkk/76kf0rsgOK4z4jjytJ0q6/wCfbVbeQn0G7H9aip8JrR+NI7Sk70AUY57/AJ1ZkLRSY/zmjH+c0AB6Vy15+5+JWmv/AM97GWP64O6upI47/nXLeIcQ+L/DFx6yzRH/AIEmKAOqopMUYoAO5paTHJ6/nRigBay4/l8RzD+/Arfka08VlzDZ4htz/fhZfyOa48XpyS7SX46fqa0uq8jVopMUYrsMhapaf/rL7/r5P/oK1cxVPT/9Ze/9fJ/9BWgC7RRRQAVzF1/x9zf9dG/nXT1zF1/x9zf9dG/nQB0kf8X+8afTI/4v940+gAooooAKRvuN9KWkb7jfSgCppH/IGsf+uCf+girlU9I/5A1j/wBcE/8AQRVygApP4vwpaT+Lv0oAWiiigBD0oHQUHpQOgoAWiiigBP4vwpaT+Lv0paACkb7p+lLSN90/SgBa5D4nJu8BX8g6xNHIPwda6+ud8dw+f4F1pMdLV2/Ln+lRP4WaUnaa9TegfzYI5P7yg/mKf3NZ3h+b7R4d02bOfMtYm/NRWj3NUtUQ1Z2FooopiEPSuX8Z/u5tAuf+eWpxAn2Oa6g9K5fx+CvhxJx1gu4ZM+nzY/rQB1NFIDkA+tLQAnc0tJ3NLQAVlX/y6vpz+pdf0rVrL1b5Z7CT+7cAfnXJjv4N+zT/ABRrR+P7/wAjUooorrMgqlp/+svv+vk/+grV2qWn/wCsvv8Ar5P/AKCtAF2iiigArmLr/j7m/wCujfzrp65i6/4+5v8Aro386AOkj/i/3jT6ZH/F/vGn0AFFY+uawunRPETLbs8LuL1rdpIIMA/NIRgD6EivNrr4g67Bp0i/b7VZIHvSLlolZZzCiNHHkHaS2/nb6Y6g0Aew0jfcb6V594y8ZX2nWtgbC6trV3triadpFD4ljjV1gOTwW3fXA4rubWeS402CeSMpJJErsn90kZIoAj0k40WyJ/54J/6CKt70/vD86paYT/YVnwf+PdP/AEEVfoAbvT+8PzpN6bvvDp60+k3D1FACb0/vD86N6f3h+dLuHqKa0iIjOzAKoySTwBQAF0x94fnSh0wPmH51z03jvw3BJDHJqa75oVuEVYpGJjbO1uF6HBqa88Z+HtPv/sV1qsMVxlQykHCFvuhmxhc5HUigDb3p/eH50b0/vD86bFPDNu8qVJNjFW2sDgjqD71mHxPoog1Gf+0oDDpzbbtw2REcZwT6/SgDU3pu+8OnrS70/vD86y7DxNo+qPAtnepIbguIvlYbygBYDI6gEGtagBu9P7w/OkZ02n5h07Gn0UAIGBHBzWd4gi8/w3qcWM77WVcf8BNXx95uO/8AQUy4XzbaWPafnQr+lJ7Di7O5h+BJfP8AAuiv/wBOqL+XH9K6Hua5H4ZSFvAOmr1MZkjP4O1dbk5+6amHwouqrTfqOopMn+6aMn+6aszA9K57x1H5ngvUgOqqr/k6n+ldAScdDWT4pjM3hXVU2nm2fH4DNAGjZSebY28n9+JW/MVPWZ4elMvhvTZME5to/wD0EVpZPoaADuaWm5OTwaXJ9DQAtZeu8WkL/wBydD+taeT6Gs3XcnSJTg/KVb9RXLjlfDT9DWj/ABEaY6UUxGyinHUZp2T6GulO6uZC1S0//WX3/Xyf/QVq5k/3TVPT/wDWXvGP9JP/AKCtMC7RRRQAVzF1/wAfc3/XRv5109cxdf8AH3N/10b+dAHSR/xf7xp9Mj/i/wB40+gBCoYEMAQRgg96h+xWnlLF9lh8tDuVPLGFPqB61PRQBC9rbyDDwRMC2/5kB+b1+vvUrfcP0paRvuN9KAKWmf8AICtP+vZP/QRV6qOmf8gK0/69k/8AQRV6gBksSzRPE4yrqVYA44Ncv/wrnwz/AM+dx/4Gzf8AxddXRScU90VGco7M5T/hXPhn/nzuP/A2b/4um33gqxs/DetW2hxSw3d5ZyQqzXEj8lTj7zHHNdbRSUIrVIbqTas2ee6T4Rk1LXLbXZnu7K1bSLW3SCC4kgkWRCxZXUYyBkDn3qdfD/iTSr/WYdLh0q5tNVvvtn2i9Zi0Odu5TGB8+Nvy/MK7uiqIOQh8Dg+Km164vvKcSFkgsYhAsg/6bHkyH6kD2rPl8CyR23im2t7Gwe01KeCS3tPMeJCqIgIJTBU5U9M+9d/RQB5rZeHNZtL/AEG2uN2U1ea/VVleZbO3ERXyvMYZOSw49z6V6VRRQAUUUUANX7z/AF/oKU9KRfvP9f6CnUAcZ8M/k8N3Vv8A88NQuI8enz5/rXZdzXG+AP3cviW3/wCeesTED2IU12Xeop/CjSt8bFoooqzMQ9Kq6nH52lXkX9+B1/NTVo9KSRd8TJ/eBFAGH4Kk83wbpbekO38iR/St6sXwpptzpHh23sboKJYi+dpyMFiR+hraoATuaWk7mloAKo6wu7Sbkf7GavUyRFkjKOMq3BHrWdaHtKcod1YqEuWSYyzbfZQN6xqf0qamoiogRQAqjAA7U6qgnGKTE3d3CqWn/wCsvv8Ar5P/AKCtXapaf/rL7/r5P/oK1Qi7RRRQAVzF1/x9zf8AXRv5109cxdf8fc3/AF0b+dAHSR/xf7xp9Mj/AIv940+gAoqG6uoLK0lurmVYoIULyOx4VRyTWO3jPQFs47o6gvlSStCoEblt6jJXbjIIHPIoA3qRvuN9KzdU8Q6VosME2o3iW6T58vcDkgDJOAMgAck9B3rR3K8W5SCrLkEdxQBT0z/kBWn/AF7J/wCgir1UdM/5AVp/17J/6CKvUAMldo4XdULsqkhB1Y+lYH/CQar/ANCxf/8Af2P/ABroqKAOe/4SDVf+hXv/APv7H/jTLrxNdWej6nqN3otzax2Vq84811O8qM7Rg10lQXlpDf2M9ncoHgnjaORT3UjBFAHneqeLPEmlzadLcbE01bS2kv7uO2WULLK+CNvmKyryBkButXrr4gyy3+o2NpYC0ezhnfdqMnlSylEYgxRYJdcgckjjNbsPg3RvLsGvbSK9urKKOJLmZPnYJ93djgkdee9bNzZ215EY7mCOVSpUh1zwRg/mCRQB5jZ+OPEcPguXX7wNI7wQeUk+n+REHlZVDBw5LKucngV0h1rVfDseoSavdw60IIUmSDTbbbdDJIOY9xGz0bPrXS/2VYf2UNLNpC1gIhCLdlymwDG3B7YqvpHhzR9B83+y9Phtmmx5jIPmbHQEnnA9KAOO1PxzrUngS/1/SrXSw0BJI+1mUwoAPvgKPnyfu5wPWpfEfirW9K1+Haog0OOO3+03Qt1mw8j7cEeYrKPujIVutdrd6XY31ncWlzaxSQXIxMhXiT6+tVLvwxol9qMWoXWm28t3FtCSMvPynK59cHpnpQBX8MaxcamNVt7vabjTr+S1Z0GA6jDKceu1gD7g1vVm6No8WjQXKxyNLJc3MlzNIw5Z2P8AIDAHsK0qAGr95/r/AEFOpq/ef6/0FOoAjjhiiZ2jjRDI25yq43H1Pqaf3NLSdzQAtFFFACHpS0h6UtABRRRQAnc0tJ3NLQAUh6UtIelAC0UUUAFUtP8A9Zff9fJ/9BWrtUtP/wBZff8AXyf/AEFaALtFFFABXMXX/H3N/wBdG/nXT1zF1/x9zf8AXRv50AdJH/F/vGn0yP8Ai/3jT6AMzU9LubyRbi01K4tZ442WNBhoSxHBdP4sfUVxs/w3up9Mkga9sDNLcTzgtbOVgMqhSYjv3BgRuySeT2r0WigDitf8F6jrUNuo1WFZLeCazWSSAsWhljVGLfNzJlc56c9K623tVtdPhtVLFYYhGCTyQBirFI33G+lAFHTFH9hWfX/j3Tv/ALIq/VHTP+QFaf8AXsn/AKCKvUAFFNddylckZGOKof2PF/z8XX/f41lUlUj8Eb/OxUVF7uxo0hIAyTgDvWf/AGPF/wA/F1/3+NUNe0m4bwtrEGnTTtdzWcscW6Qn5ipxj3qITrOVpQsvX/gDcYW0f4E1x4v8N2hjFxrunQmVBJGJLlV3KejDJ5BweamuPEmh2l/FY3Or2MN3Ljy4ZJ1DtnpgE9+3rXE6N4WuNU1+11qC5ubDTG0W0hi8goCzIWJRlZSRgEenepToOtadqGu20fh+x1eHVb8XSXV1KoREO35ZFPzHZtOMZ7dK6CD0TIHU1lw+JtBuHkSDWbCV42COsdwrFSW2gHB4yePrWBP4O1D/AISkawdRTUIfM3pbXxcfZfeEqdox7qT71xr+GdX0jwzrVt9hntLKXT1tYbWS6W5aS8aT5XjYDIXkdcc84GKAPZqKitldLWJZW3SKgDH1OOaloAKKKKAGAZZj7/0FO2j3496RfvP9f6CnUAJgcdePekCjPf8AOnUnc0AG0e/XPWjaPfrnrS0UANKjB6/nS7R7/nQelLQAm0e/PvRtHvz70tFADcDJ6/nS7R7/AJ0dzS0AJtHv+dIQB6/nTqQ9KADA9/zo2j3/ADpaKAE2jjrx71T08YkvR/08n/0Fau1S0/8A1l9/18n/ANBWgC7RRRQAVzF1/wAfc3/XRv5109cxdf8AH3N/10b+dAHSR/xf7xp9Mj/i/wB40+gAooooAKRvuN9KWkb7jfSgCnpYzolmPW3Qf+Oirfzei/nVTSf+QNZf9cE/9BFcT4c0/XPEen3GoS+LtUtib25iWGGODaqpKyqBmMnoB3oA9B+b0H50ZbOMD86811eZ9G1dNKn8ZeKZ71oPtAis9PjnIjzt3HZCcDNXtJspNb0qLU7H4g6w9rISqu8UCEMDgqQ0QIII6GgDvPm9B+dHzeg/OuSfwzqcZUP471hS3TctsM/+Q6P+EY1PBP8AwnWsYAyfktuB/wB+6AOtJYDoPzoy2Og/OuJi0a/mvLy2HjbX0a12+Y8lvAqHcMjaxiw3vjpVg+GtREYc+PNXCEZDFbbB/wDIdAHXfN6D86Pm9B+dckPDOpmTyx471gvjO0LbZx648uqF1YT2ep2OnS+Pta+03zvHCixW7ZZV3EHEfHHrQB3mWzjA/Oj5vQfnXn1zC1n4ltfD9x8QNaj1K6iM0MbRQYdRnofKxng8e1WNH0u712ya7sPHWuPCsrwktDAvzIxVhzF6g0Adz83oPzoJYDOBx71y3/CJax/0O+
tf9+7f/wCN1HN4X1WGGSWTxvrYRFLMfLt+g/7Z0AdaoPJPc5p1eUaXrFtq09nFD478TQi+O20ludPjijnPojtDtJ/GuoHhnUi7IPHesFl5YbbbI+v7ugDr6Tua4afSb2C7trY+ONedrhmVWjggZVwu47mEWF49etXP+EX1TI/4rnWfmGR8lvyP+/dAHXUVx48Nak0RkXx5q5jHVgttgfj5dU9P0651S9v7S08ea3JLYSLHP+5twAzKGGD5fPBHSgDuz0pa8t0++bVb37LZeL/F8379rczppaGFXU4OZPJ2gA9810X/AAjeo4Y/8J7q+FGWO224+v7ugDsKK4//AIRrUggc+O9X2kZDbbbB/wDIdKvhnUnbanjvV2YjcAFticev+roA67uaWuT/AOES1j/od9b/AO/dv/8AG6Z4Tk1KDxJ4i0q+1W51GOzNuYZLhUDDehYj5FA60AdfSHpS0h6UALRRRQAVS0//AFl9/wBfJ/8AQVq7VLT/APWX3/Xyf/QVoAu0UUUAFcxdf8fc3/XRv5109cxdf8fc3/XRv50AdJH/ABf7xp9Mj/i/3jT6AMbXdefRYmMekalfv5TOotIN4yOinHIJ+hrzB/iD4j/sZpJ7wWlxHLfkyPZlFd4gpigAcd8kf3jjsa9ophhjYYMakZ3cjv60Aee+M/GF9YWtibG+hs3NvcSXDbVfFxHGrpAc9Cxbp1OOK7y1mlm02CaaMpLJErOn90kZIqZoY2+9Gp53cjv605vuH6UAU9IP/EmseD/qE/8AQRXP/Dr/AJFib/sI3v8A6UPXQaT/AMgay/64J/6CK5/4df8AIsTf9hG9/wDSh6AM/wAReBrrxB44fUze3Fna/wBkG1jntLho5Vm8zcDgdVx2Nczc/DnxBLpGiW72li406O4hltYplCTM5yJ/3iMNx5zkZGTg17HRQB41r3gTV7LS5p5LK31hItANon2m4LPaSIGJZPl+YnIAIAOQKUeDvEd3oF2LC1tnj1nw/Z2haecxtA8aEHK7TnO6vZKKAPJ9Z+Hmu3z6s8MkAS4nsJVhMgAnWGPa6NlSBzyMgg45p1h8Nbtm0NNRtoJLG31G5urm0llWRUR48KqhUVfvAEqBgV6tRQB5NYfDnWLXxib12TyV1GS7S9jmRXEZBCx7fL3nHTbu24FJ4c+H2saZrnhuefT9Oj/sqa4N1fxzky3m9WCsRt689yeterzSpBDJNI21I1LMfQDk158PiPqK6GniaTw6F8Nu4xP9rBnEZbaJDHtxjPbdmgCbxX4Dm8TeLjqDSLBFHpnlW1yjfvILlZd6OB6D/EVzkUPi3wT4WsLN5/8AS2luri4FpCZBK7PuUK3lsM8n5Ttz/eGK6yTxpqt9qGpxeHdAXUrbTJPKnke7ETSSYBKxrtOSAe5HNNuvGWtP4ju9I0vw9HcSWlnFdSie8ETjeD8gAUjIxjrigCHSZPGOra1dvJdSWemrcyxHzI4w4TaNmxShOcnkkkYzWt4Z/tXUPBSS6ncyzX13CxYTRrH5ZIIxhQOPr61T0L4gW/iDV9ItLWzdYtQ0+S83u/zRlH2FCMc855z2q9e+KJ49Z1PTdN0uS/l0+0SaRY5ApaRz8kYzx0BYnPAx1oA4/S/BviifQvDGgalbWFpZ6NdRXMlzFdGSSUxkkKq7RtyTyc1U0f4a67ZalLJcNG0ipeA3i3Cg3PmghQwEe49Rncxxjit4/Eq4iS7tZ9GT+1YdQg0+OGG63wySyjIHmbeNvO7jihfiVPcxWlrZ6MJNZmubm2ktHuQqRtbjMh37TkcrjjvQBV034btZW/g+L7FZqtikv9q7T/rmeHyyenzc8c9qoxfDPXn0fWLOfUYvNiszpuiyBjlLffu+fjgsNqHHYVtXnxHuV8M23iKx0Iy6Y1p9qmmnuli2ndtMSjBLPkH0BrodJ8SDUddu9Kltmt5oreG7h3HmSKQdSOxDAgj6UAeex/DbWv7EvEWCCIyXdrOdOe4TybhIvvK2yNVXd9DnAzXW+A/Dd7oF5r9xdWVpYxahdJNBbWsm9Y1CAEdB39Biu0ooA4TwV4EOhie7v5J/tzXtxMixXkhh2OxK5TO3OD6dawLT4ZXlj4M0W2Sx0+e/tbz7RqNs74S+UM+1WfHOAwIBGOK9aooA8psfhxqDXWlvf2tkLCPVLi8k04Pvit4nj2rGuRhvmGSMAc1L4W+Hd9oV/wCGbvyLSOWykvPtskb/ADOkmfKXOPmAGOO1eo0UAFcloH/JQfF//bn/AOijXW1yegf8lB8X/wDbn/6KNAHV59jQT7GlpDQAZ9jRn2NLRQAmfY1T0/8A1l7/ANfJ/wDQVq7VLT/9Zff9fJ/9BWgC7RRRQAVzF1/x9zf9dG/nXT1zF1/x9zf9dG/nQB0kf8X+8afTI/4v940+gAooooAKRvuN9KWkb7jfSgCnpP8AyBrL/rgn/oIrn/h1/wAixN/2Eb3/ANKHroNJ/wCQNZf9cE/9BFcL4W8Sx+HtMudPvtI1vzlv7p8xabK6lWmdlIYDByCKAPR6K5P/AIWBp/8A0CfEH/gpm/8AiaP+Fgaf/wBAnxB/4KZv/iaAOsork/8AhYGn/wDQJ8Qf+Cmb/wCJo/4WBp//AECfEH/gpm/+JoA6yiuT/wCFgaf/ANAnxB/4KZv/AImj/hYGn/8AQJ8Qf+Cmb/4mgDqpI0lieORQyOpVge4PWuCHwzb+zE0F/EN4/htJAw08xJu2htwjMuN23P4+9af/AAsDT/8AoE+IP/BTN/8AE0f8LA0//oE+IP8AwUzf/E0AQXfgOdb3UpNG8QXek22psHu4IYkbLYwWjY8oSB1H1oufAt4NduNU0zxHdWL3FpFaS5gSZmVAQDufJ3c9an/4WBp//QJ8Qf8Agpm/+Jo/4WBp/wD0CfEH/gpm/wDiaAE0bwFYaFqul3llPKE0+weySJwDv3vvLk+uc/nUN54X1KTxF4geyvJLK31q0hBvIsF4JY8qQAf7yHg9sH2qf/hYGn/9AnxB/wCCmb/4mj/hYGn/APQJ8Qf+Cmb/AOJoAzbX4aNbeH4dKOtuTaXUV5ZTJaRoYZkJO5sf6zOed1OHw0SG3tJbTWZ4dWguLi4a+MKt5jTjEmU6AYAx6YrQ/wCFgaf/ANAnxB/4KZv/AImj/hYGn/8AQJ8Qf+Cmb/4mgDJufheSmiwWWvT29ppEQW3t5LZJkMmSTKwbgtz6cdq29M0S9Xxtf61ekFVsobGBuMygEu7kDpljjHsai/4WBp//AECfEH/gpm/+Jo/4WBp//QJ8Qf8Agpm/+JoA6yiuT/4WBp//AECfEH/gpm/+Jo/4WBp//QJ8Qf8Agpm/+JoA6yiuT/4WBp//AECfEH/gpm/+Jo/4WBp//QJ8Qf8Agpm/+JoA6yiuT/4WBp//AECfEH/gpm/+Jo/4WBp//QJ8Qf8Agpm/+JoA6yuT0D/koPi//tz/APRRo/4WBp//AECfEH/gpm/+Jqv4PuH1HxX4m1NbK9tra5NsIjd27Qs22Mg4DD1oA7SkPSlpD0oAWiiigAqlp/8ArL7/AK+T/wCgrV2qWn/6y+/6+T/6CtAF2iiigArmLr/j7m/66N/OunrmLr/j7m/66N/OgDpI/wCL/eNPpkf8X+8afQAE4GT0Fc6fHPh77HHdJfmWGW4e2jMMLyF5E+8AFBJA9elWdd8Ow69G0c1/qNsrRNEy2tyY1YN1yOhP1Fcm3wuC6RJp6anFMrXE8iNd2SSGESgD93jbtYYzkcZ7UAdfq3iXStDhgl1G5MKzgmMeWzEgDLEgAkADkk8DvWmHWSHejBlZcgjoRXH654Ju9Zht0/tcI8EE1ojvb7yYJY1Rg3zcv8ud3v0rrLa1S1sobVCTHFGsa5POAMUAQ6R/yBrL/rgn/oIq7VJdKs0UKsbqoGABKwAH507+zLX+7J/39f8AxoAt0n8XXtVX+zLX+7J/39f/ABo/sy1/uSf9/X/xoAt0VU/sy1/uyf8Af1/8aP7Mtf7sn/f1/wDGgC0elA6Cqv8AZlr/AHZP+/r/AONH9mWv92T/AL+v/jQBboqp/Zlr/dk/7+v/AI0f2Za/3ZP+/r/40AWv4vwpaqf2Za/3ZP8Av6/+NH9mWv8Adk/7+v8A40AW6RvunnHFVf7Mtf7sn/f1/wDGj+zLX+5J/wB/X/xoAt0VU/sy1/uyf9/X/wAaP7Mtf7sn/f1/8aALdJ3qr/Zlr/dk/wC/r/40f2Za/wB2T/v6/wDjQBboqp/Zlr/dk/7+v/jR/Zlr/dk/7+v/AI0AWj0paqf2Za/3JP8Av6/+NH9mWv8Adk/7+v8A40AW6Kqf2Za/3ZP+/r/40f2Za/3ZP+/r/wCNAFruaWqn9mWv9yT/AL+v/jR/Zlr/AHZP+/r/AONAFukPSqv9mWv92T/v6/8AjR/Zlr/dk/7+v/jQBboqp/Zlr/dk/wC/r/40f2Za/wB2T/v6/wDjQBbqlp/+svv+vk/+grTv7Mtf7sn/AH9f/GpoLeK2QpEu0E7jyTk/jQBLRRRQAVzF1/x9zf8AXRv5109cxdf8fc3/AF0b+dAHRxkfPz/EafkeorJ1bwvouuTpNqWnxXEiLtVmJGB+BrP/AOFeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6ijI9RXM/8K88J/8AQEg/76b/ABo/4V54T/6AkH/fTf40AdNkeooyPUVzP/CvPCf/AEBIP++m/wAaP+FeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6ijI9RXM/8K88J/8AQEg/76b/ABo/4V54T/6AkH/fTf40AdNkeooyPUVzP/CvPCf/AEBIP++m/wAaP+FeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6ijI9RXM/8K88J/8AQEg/76b/ABo/4V54T/6AkH/fTf40AdNkeooyPUVzP/CvPCf/AEBIP++m/wAaP+FeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6ijI9RXM/8K88J/8AQEg/76b/ABo/4V54T/6AkH/fTf40AdNkeooyPUVzP/CvPCf/AEBIP++m/wAaP+FeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6ijI9RXM/8K88J/8AQEg/76b/ABo/4V54T/6AkH/fTf40AdNkeooyPUVzP/CvPCf/AEBIP++m/wAaP+FeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6ijI9RXM/8K88J/8AQEg/76b/ABo/4V54T/6AkH/fTf40AdNkeooyPUVzP/CvPCf/AEBIP++m/wAaP+FeeE/+gJB/303+NAHTZHqKMj1Fcz/wrzwn/wBASD/vpv8AGj/hXnhP/oCQf99N/jQB02R6iuZuiPtc3I/1jfzo/wCFeeE/+gJB/wB9N/jSf8K68I/9AO3/ADb/ABoA/9k=” /> مقادیر N معادل مورد نیاز برای دستیابی به شرایط روانگرا یا غیر روانگرا در شکل 4-8 آمده است.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *